Adaptive Security Framework for Ad-Hoc Mobile Wireless Network

RAJANI MURALEEDHARAN & LISA ANN OSADCIW PhD,
L.C. SMITH COLLEGE OF ENGINEERING, SYRACUSE UNIVERSITY, SYRACUSE, NY.

Goal

- ★ To analyze and propose a defense mechanism against cross layer Denial of Service (DoS) attacks in Ad-Hoc Wireless Networks (AWN).
- ★ To predict the validity of the DoS attacks using receiver operating characteristics (ROC).
- ★ To achieve maximum reliability on DoS claims improving the Quality of Service (QoS) using evolutionary algorithms (Ant System).

Swarm Intelligence (Ant System)

- Multiple ants (agents) working together to find the global optimum.
- **★** Communicate interactively either directly or indirectly.
- ★ Move towards optimal solution by sharing knowledge.
- **Depositing pheromones for communication.**
- ★ Tabu-list serves as a memory tool.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

"Traditionally, communication using AWN is assumed to be SECURE"

Protocol (Flooding, De-synchronization)

Routing (Misdirection, Homing, Black Hole)

Coding (Collision, Exhaustion, Unfairness)

Modulation (JAMMING)

Mathematical Approach

Results & Analysis

Jammer Type	# of Malicious nodes	Average Distance	Average Energy	Average Packet Loss	Average Packet Delivery	Detection (%)
STJ	3	9.756	15.2038	0.038	97.349	0.9721
	12	92.373	50.0292	0.3792	68.7423	0.8619
ELINT	3	10.2921	20.948	0.173	82.1823	0.8023
	12	70.0383	90.893	0.9236	0.0034	0.5466
Sybil Attack	3	11.0972	12.2241	0.0212	85.0068	0.8197
	12	67.4066	80.4509	0.5731	25.7913	0 6063
Worm-hole Attack	3	6.0793	29.2943	0.0167	92.1670	0.8594
	12	50.4687	75.9057	0.1905	37.4319	0.7089

Conclusion

- Under Single Tone Jammer (STJ) attack, 97% packet delivery is achieved.
- ★ Under ELINT attack, 82% packet delivery with only 20% energy dissipation is obtained.
- Under Sybil attack, 97% of the time illegitimate nodes were detected prior to attack.
- ★ Collision in Ant System was avoided by 93%, under 50% of network failure.
- ★ Trade-off between performance parameters such as energy, Pd, Pl and DoS characteristics is dependent on the Weights.
- Addition of parameters in the future will not affect the approach.
 2007 NUNAN LECTURE SERIES