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ABSTRACT

Sensors and their corresponding communication network operate under a variety of constraints, which make effec-
tive and robust network routing challenging. In this paper, an extension to the sensor network routing that takes into
account physical layer predictions and models [1] using the ant system is proposed. This paper demonstrates the robust-
ness of this approach under slow or fast fading conditions. Implementation of this algorithm should be able to handle
hostile environmental conditions. The performance of the network is evaluated based on the bit rate accuracy and
response time of the communication routing agents within the network.

Keywords: Protocols, Fading Channel, Swarm Intelligence[3], Ant System, Energy Efficiency, Data Min-
ing[4, 5], Sensor Network

1. INTRODUCTION

Sensor networks with self organizing techniques that optimize nodes based on their capabilities and energy capaci-
ties are best suited for deployment in remote area, where batteries often cannot be recharged. Power efficiency and opti-
mization, power scavenging, are the only approaches viable in such an evironment. A sensor network with capabilities
such as efficient routing, healthy prediction and self-healing is preferrable. This is the focus taken in this paper.

Sensor networks, which distribute dynamic information, consisting of a multitude RF links and sensor nodes, which
include sense and collect this information. Energy is the major constraint of the sensor network. Number of nodes, algo-
rithm complexity, and memory are all functions consuming power [6]. The challenges faced by this network are optimi-
zation and load balancing of the communications based on priorities and constraints. This optimization problem is an
Nondeterministic Polynomial (NP) hard problem [18]. The Ant system is a learning algorithm which compares local
with global optimization information giving it robustness and versatility to solve NP hard problems.

Similar to the deployment of the sensor node, the ant agents are randomly placed along the network. The agents
communicate with neighbors (agents) to obtain an optimal solution using the current node status and the information
gained through previous routes. The decision on validity of the route is obtained from pheromone deposition by the
agents accumulated over time. There are many QoS issues associated with the physical layer of a network. The type of
modulation scheme, coding scheme, and queueing impacts the energy exploited for communication. And also commu-
nication delay plays a major part in a routing protocol. The amount of time taken for recovering from any data loss or
re-routing information during link failure is a tedious task. Unlike other routing algorithms, swarm agents react immedi-
ately upon sensing changes in the environment. This feature of the swarm agents truly make it an cognitive algorithm.
The only data lost is the one that was prepared by the most recently visited node. Using the updated link status and the
performance parameters, the agents exert a random movement towards its destination. 



The two main factors that define an evolutionary algorithm are optimality and reachability[14], which draw the
boundary between a global and local optimal solution. Although an evolutionary algorithm may not achieve a global
solution, a local optima is feasible under adverse conditions. The main focus of this paper is the performance of predic-
tive sensor network under different fading conditions. Modulation schemes such as direct sequence spread spectrum -
binary phase shift key, DSSS-BPSK, and frequency hopped spread spectrum - Gaussian frequency shift key, FHSS-
GFSK, are compared based on the two main features: energy efficiency and resilience. In the second section, the evolu-
tionary algorithm (ant system) chosen is compared with the genetic algorithm mainly focusing on its characteristic fea-
tures. Section 3 focusses on the physical layer, and research challenges faced by the sensor network. Simulation results
in section 4 are presented including a discussion of the predictive sensor network’s robustness under varied fading
effects. The paper concludes with the fifth section discussing conclusions and future work.

2. EVOLUTIONARY ALGORITHM - ANT SYSTEM & GENETIC ALGORITHM

Evolutionary algorithms (EA) are formulated based on phenomena found in nature. Two such evolutionary algo-
rithms are the genetic algorithm and the ant system. The former is inspired by using simple genetic evolution of a living
being, and the latter is inspired by studying the behavior of ants. The genetic algorithm (GA) was developed in the
1970’s by John Holland at University of Michigan as a method to solve optimization problem. Swarm intelligence (SI)
is an EA that uses artificial intelligence (AI) techniques. SI demonstrates the collective behavior of social insects,
namely the ants, bees, birds, slime mould, etc. In the early 90’s, studies on optimization techniques using analogies
based on swarm behavior of natural creatures had been conducted. Ant systems (AS) evolved from SI, and its key fea-
ture is the emergent behavior of the autonomous agents. Both GA and AS are specialized in their own ways for solving
discrete, continuos and hard combinatorial optimization problem. The algorithm chosen for any problem is primarily
application dependent.

G’omez in [7] provides reasons for the success of Ant Colony Optimization (ACO) in comparison to GAs on the
Travelling Salesman Problem (TSP) benchmark problem, a famous NP hard problem. Table 1 summarizes performance
comparisons of the various algorithms with respect to these benchmark NP hard problem. The TSP solution space has a
globally convex structure [12]. The presence of one dominant solution in GA results in a behavior like a single point
search algorithm. GAs can easily produce a local solution rather than a global solution. Therefore when multiple solu-
tions dominate a particular problem’s population, the reduced diversity of GA may result in an errored solution. Thus,
GA falls short in situations like this where ACO, using positive correlation approaches where promising solution is
located, may easily succeed.

In Table 1, the algorithms are compared with respect to their performance and computation time based on the analy-
sis in [8, 9, 10, 11]. The performance is given by the green bar varying from 0-100%, and the red bar denotes the com-
putation time. Success of an algorithm is defined as attaining the optimal solution. The computation time is defined as
the amount of time the algorithm takes to obtain an optimal solution. Though GA finds an optimal solution, the compu-
tation time taken in achieving best results is very high, and, hence, the GA approach falls short. Whereas, the Tabu
search technique rarely falls into a local optima without finding the global optima with less processing time making it a
competitive alternative to GA. In some cases, a combination of artificial intelligence such as a bayesian network and
any of the evolutionary algorithm achieves better result. It is shown that an algorithm is not chosen based on perfor-
mance only but also on the processing time. A trade-off between factors affecting the overall performance of a system is
primarily application dependent. 



 Table 1. Overall Performance of Ant Approach in comparison to other algorithms

In this paper, a sensor network deployed in a remote area is considered, for example, a military application. Thus,
the sensitivity and performance of the information processed is very high. There are many routing algorithms such as
shortest path, centralized, distributed and flow-based. The complexity of each algorithm focusses mainly on the perfor-
mance measure used. A military application by nature requires self organizing, distributed and dynamic network.
Hence, based on the nature of the problem, an evolutionary algorithm is preferred in comparison with traditional algo-
rithms. 

The sensor network considered here is made of decentralized nodes with limited resources, whose topology, infor-
mation and network size are dynamic with respect to the environment. Henceforth, the performance metrics such as
bandwidth, network throughput, communication delay and other constraints are traded off depending on the algorithm
used. SI’s characteristics such as scalability, fault tolerance, adaptation, speed, modularity, autonomy, and parallelism
[13, 14] make it an optimal choice for the predictive sensor network. There has been many versions of the swarm-based
routing algorithms such as AntNet, Ant Based Control (ABC) [21], Ant colonies, and Ant-based Routing System (ARS)
[22]. The AS exploits features of previously mentioned algorithms as well as adapting to dynamic environments. The
agents in the system communicate interactively either directly or indirectly in a distributed problem-solving manner.

In AS, the initial set of agents traverse through the nodes in a random manner, and, once they reach their destina-
tions, they deposit pheromone trails as a means of communicating indirectly with other ants.The pheromone accumula-
tion is proportional to the number of agents traveling between two nodes during one complete iteration. The amount of
pheromone left by the previous ant agents increases the probability that the same route is taking during the current iter-
ation. Other performance factors such as energy, hops, distance, and bit error rate (BER) also affect the probability of
selecting a specific path or solution. Pheromone evaporation over time plays an important role in preventing suboptimal
solutions from dominating in the beginning.

The ant agents are differentiated into three depending on their task such as allocator, sense and de-allocators. Unlike
other algorithms, AS does not require any initial solution given to the system. It only requires parameter settings of the
agents, constraints posed on the network, and weights given to each of these. The agents traverse the nodes ignoring any
depleted node as shared by the neighboring nodes’ current node status information. Thus the network performance is
maintained using this learning algorithm. New paths are set up to neglect communication using degraded nodes; These
nodes now perform only sensing function and are removed from routing. The initial computational cost and time is high
as the agents learn but drops drastically balancing the load optimally over the network. 
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A Tabu-list is a gradient-descent search based on the memory parameter set at the initialization. The Tabu-list serves
as a memory tool listing the set of nodes visited by that ant agent and avoids a circular path or loop from forming. The
ant’s goal is to visit all nodes in the network constrained by the number of hops. The pheromones on all the paths are
updated at the end of a tour by a returning ant. The pheromone deposition, tabu-list, energy monitoring and predicting
from stored information are combined in the AS presented, which has improved robustness and gradual degradation.

2.1  Application Using Ant System
Figure 1 shows the wireless sensor network deployed in a remote area with homogeneous nodes. The red nodes

denote that the sensors are active (i.e., they are capable of routing and sensing) whereas the blue sensors are inactive;
whose energy have been depleted. The green rectangle denotes the beacon nodes, which helps in determining the local-
ization of the sensor nodes. As the network is deployed in a remote area, there are objects such as bridge, mountain, etc.
that pose as barrier for communication between the sensors. Other conditions such as folliage, snow, rain, etc may sim-
ply degrade the communication signal rather than completely block it. The energy of each sensor and their communica-
tion strength varies depending on the geography along the routing path. And, also there is no security enforced on these
sensors, hence they are easily compromised. 

Fig. 1.Wireless Sensors deployed in a remote area

 The assumptions for this simulation include the node’s awareness of their approximate location by testing the signal
strength during their initial deployment. Secondly, the sensors schedule their sleeping time so that its neighbors take
over for it.  If there are no neighbors, the sensor does not participate in routing saving energy. Messages are received
and routed to a neighboring node with an updated time from the sensor’s clock and additional data from the sensor if
available. Depending on the sensor’s id and clock time, duplicate information can be easily identified and omitted. The
sensors are non-uniformly distributed, and their locations are represented in dimensional cartesian coordinates for this
simulation. The nodes are initially assigned with random energy values.
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Using features such as pheromone deposition, energy tracking and tabu list maintenance, routing in an adverse envi-
ronment is possible due to the local information available. The energy dissipated is estimated by the total distance trav-
elled by the agent, which move from node to node. The agents are randomly placed on the nodes initially. When
triggered by an event such as the sending of a prioritized message, the agent quickly routes the data to the proper desti-
nation node within the maximum number of hops. As mentioned above, no circular paths are allowed preventing a node
from being re-visited. The Tabu list contains a record of the path taken by each agent. The pheromones are updated, and
the list is cleared after completion of each tour. The parameters used in the ant system is given in detail in the following
section.

2.2 Parameters Of the Ant System
The performance of the AS is determined by the node spacing and 4 parameters: Q, ,  and  [6]. The complexity

of the AS algorithm depends on transferring the routing information between agents and updating the table in a timely
fashion. The network configuration parameters are relatively weighted depending on a real time scenario. The nodes are

spread across a 2D plane. The Euclidean distance  where i is the source node, j is the desti-

nation node, and (Xi,Yj) are the cartesian coordinates of the node. 

The ant agents accumulate pheromones and dissipate energy as they traverse through the nodes based on the path
probabilities. The pheromone is initialized and is assigned a value of 10. The messages are routed based on their impor-
tance, thus differentiating them into high, medium and low threats. The transition probability is now associated with a
new factor, the threat probability . of the pheromone, and transition probability in [2, 8, 10]. 

3.  PROTOCOLS 

The physical layer of the predictive sensor network [2] is being extended to affect routing if the OSI-ISO terminol-
ogy is considered. The decentralized sensor nodes will route the information by means of protocols such as IEEE
802.11b and Bluetooth GFSK as used in this paper. The sensor nodes are assumed to be lightweight, 41g, with antenna
and a data rate of 11Mbps. There are many IEEE Standards available in the market, but zigbee based on IEEE 802.15.4
standard is quite popular for simple sensors in a sensor networks. A comparison between AS’s performance using
FHSS_GFSK and DSSS_BPSK modulation scheme is analyzed. The data throughput of FHSS_GFSK and DSSS-
BPSK is assumed to be 1Mbps. The models are simulated using Matlab 6.5 and Simulink R13.

4. PREDICTIVE SENSOR NETWORK

A sensor network with 16 nodes is considered with data fusion occurring at each node keeping the information cur-
rent. In addition, the agents use sensor node’s information to determine patterns [19] that are used to predict or antici-
pate changes in the environment with respect to time. The number of hops is one of the factor that influences the path
taken by an agent. Hence, the routing path might include the fused data processed by the routing nodes giving some pre-
dictions even when not requested.

4.1 Detailed Approach - Predictive Sensor Network 
The predictive sensor network uses the spread spectrum method for keeping the nodes at minimal risk. Rayleigh

fading is assumed simulating the challenging environment. Due to the scarcity of power, the memory of the sensor
nodes is assumed to be limited and queuing of messages at each node is limited. There are different types of messages in
this network such as high threat, medium threat and low threat. The arrival time of these messages is given by the pois-
son distribution. Henceforth, the transfer of message to its destination node highly depends on the importance of the
message rather than arrival time. The number of retransmission attempts are limited so the AS upon detecting a high
BER finds an alternate route with minimum BER and good SNR value. The energy dissipated depends on the data type;

ρ α β

Dij Xi Xj–( )2
Yi Yj–( )2

+=

Γ i j



as control data consumes higher energy than the message data. From the use of AS, a network with longer lifetime and
energy efficiency is achieved by trading off various constraints of the network. 

4.2 Pseudo Code - Predictive Sensor Network
Figure 2 provides the pseudo code of predictive sensor network. Once the network is set up, the ant agents are ran-

domly placed on the network with their initial parameters configured to default settings. The simulation is performed
for a defined number of iterations or unless a global optimal is reached. 

As mentioned in [3], the ant agents work towards the goal in a decentralized manner using their three main features.
The number of agents is equal to the number of sensors in the network increasing the ability to find a reliable and effi-
cient route. The performance factor plays a key role for the path selection by the agent. An additional factor Pe, which,
is the bit error rate for the corresponding signal to noise ratio (SNR) value is added to the transition probability, Pij. For-

mulation of (2) shows that the physical layer factors are important in making routing decision for the network layer. 

Fig. 2.Pseudo code - Predictive Sensor Network

Threat messages are routed by the agents upon detection to the destination node within the specified number of
hops. The GFSK and BPSK carrier information is encoded using hamming code (15,11) to reduce the number of BER.
The transition probability is the key factor for making decisions. Weights on each of the factors affects the movement of
the ant agent in the network. The transition probability is given as 

Initilization of AS parameters
Initialization of N/w
   for each node
      Generate arrival time
      for each ant
       for each hop
          next node = select (node,destn node, tabu-list,perf factor)
          if msg_priority = high
              break;
            elseif msg_priority = medium
                if msg_atnode > msg_received
                    put msg_on_stack
                else
                  break;
                end if
             else 
                  put msg_on_stack;
           end if
        lay pheromones
       end for loop (hop)
        update pheromone deposition, , transition probability
     end for loop (ant agent)
     update tabu-list
   end for loop (node)



(1)

where Perfij is the performance factor given by (2), which consist of the normalized value of the hop, BER, link status,

and distance. These factors help in making decisions while traversing the data set formed by the agents

. (2)

The link status, hops and BER in a tour taken by an agent is incorporated in the pheromone (3). Thus the trails
formed by the ant agent is now dependent on the both the physical and the MAC layer of a network. The Partially
ordered sets (POSets) or a user could weight the performance factors. In this paper, the primary goal is to attain less
BER value with minimal energy, hence these two factors are weighed more than the number of hops, link status and dis-
tance. The pheromone deposition is defined as 

(3)

(4)
The tabu list now consists of updated values of the average energy, BER, distance travelled and the response time as

in (4) for the particular sub-optimal route with high reachability.

4.3 Result 
A sensor network with 16 nodes is considered in this simulation run. Agents randomly placed on the nodes. It is evi-

dent that more numbers of ant agents leads to less computation time and high performance. To ensure fairness, the net-
work consists of equal number of agents and nodes. The table below illustrates the performance of the algorithm when
the network undergoes various threats. 

The parameters of ant system are assumed to be α = 4, β = 7, ρ= .7, Q = 9 and the initial pheromone value, ψ as 10.
At the initialization stage, the source and destination nodes are defined and kept constant throughout the simulation.
The stability of the algorithm is analyzed by iterating all scenarios for 100 runs.

 The total hops for all simulations is assumed to be same as the number of nodes in the network, that is 16. The
actual number of hops is user defined which varies depending on the problem assigned. The normalized value of hops is
given as HopsNorm. The total number of links in the network is equal to the total hops in the network. The normalized

link value is given as LinkNorm. The difference between the estimated BER for a wireless medium is10-6 and the actual

BER obtained through simulation is normalized resulting in BERNorm. The predicted BER, energy and distance helps in
making a decision whether the nodes in the current route are capable of communicating with its peers on the next itera-
tion.

Figure 3 shows the BER of DSSS-BPSK model for three different threat levels. The BER for high threat is given by
red circles, medium threat is denoted by yellow ‘+’ and low threat by green ‘*’ symbols respectively. The BER
achieved for high threat is very less compared to messages with low threat. 
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Fig. 3.The BER [DSSS-BPSK] of the Predictive Sensor Network Under various Threat Level

Table 2 shows the performance of the sensor network where two link failure is estimated. The remaining 14 nodes or
hops stay active and the number of actual hops is 8 within which the agents must reach their destination. The weights
given by the Posets to distance, energy, BER, hops and link status are 0.2, 0.3, 0.3, 0.1, 0.1 respectively. The threat in
the network is given random probability ranging from 0-1 for low to high. In the scenario below, the probability for
high, medium and low threats are 0.9, 0.1 and 0 respectively. Thus messages with low threat could be routed at leisure.
The response time of each of the low threat message undergoes a delay. BER is defined as the product of the Probability
of bit error (Pe) and bit rate(Br). The BER1 denotes the bit error rate of the DSSS-BPSK model and BER2 denotes the
FHSS-GFSK model. Its shown below that the BER1 is always higher than the BER2, due to the fact that no error control

techniques are used in the former. 

 Table 2.  CASE1: Performance of Sensor Network - Link Failure - 2 Nodes, 

Threat

Predicted 
Distance Predicted 

Energy

Predicted 
BER1

Predicted 
BER2 

Response 
Time

High 10.0939 14.8077 0.6125 0.5263 0.0020

Medium 14.2769 20.2170 0.6750 0.5611 0.0127

Low 26.4425 26.0393 0.7238 0.5941 0.0223



 Table 3 shows 50% link failure with 8 nodes in the network have depleted energy. Under this condition, maintaining
the BER and energy at minimum is a tedious task. The weights given to the performance factors are 0.1, 0.2 0.4, 0.1,
and 0.2 respectively. The threat probability is given by 0.5, 0.5 and 0 for high, medium and low threats respectively. The
predicted distance under 50% link failure or with only 8 hops is given by 10.9798. This value is very high when com-
pared to the earlier case of 10.0939. The high value is due to the fact that the agents have to transfer messages to farther
active nodes thus attaining a predictive energy of 15.1010 for high threat messages. Similarly, the response time of the
agents is also affected. The BER1 value in this case is lesser than the BER2, as the hamming code is used in the former
and not in the latter. The BER value of case2 is less than BER values of case1, as the weights given by the Poset to BER
was higher unlike the previous case. Consider a scenario where the destination node has depleted its energy. In this case,
the message regardless of threat level is undeliverable. 

Table 4 gives the performance of the sensor network where the nodes are evenly distributed. The equi-distant node
placement results in uniform energy dissipation among the nodes. The threat probability and Poset weights remains the
same as case2 for fair comparison. 

The predictive distance was kept at constant 15, due to the placement of nodes, this has directly reduced the predic-
tive energy for messages under medium and low threat mode. The response time of the agents is reduced significantly.
The time taken to traverse a message in a evenly distributed network is almost the same with little or no delay depend-
ing on the message traffic. 

Table 5 gives the performance of the sensor network where the energy at each node is evenly allocated. As all the
nodes have same energy level, but random energy dissipation, the link failure could be problem dependent. In this case,
the actual number of hops is 8 and the weights for the performance parameters are 0.1, 0.2, 0.3, 0.1 and 0.3 respectively.
Hence the link status and BER plays a key role in the traversing the network. The primary factor that influences the
energy dissipation is the communication strength at each node. The results show that the initial energy distribution has
minimal impact on the performance of the network. The communication strength and the energy depletion during the
processing stage have higher impact on the network performance.

 Table 3. CASE 2: Performance of Sensor Network - Link Failure - 50%

Threat
Predictive 
Distance

Predictive 
Energy

Predictive 

BER1 

Predictive 

BER2

Response 
Time

High 10.9798 15.1010 0.4188 0.4565 0.0050

Medium 22.0188 23.1060 0.4562 0.481 0.0165

Low 25.1183 28.0492 0.5238 0.5315 0.0288

 Table 4. CASE 3: Performance of Sensor Network - Distance Evenly Distributed- Link failure - 50% 

Threat
Predictive 
Distance

Predictive 
Energy

Predictive 

BER1

Predictive 

BER2

Response 
Time

High 15 17.0801 0.3762 0.4435 0.0096

Medium 15 18.9161 0.4641 0.4717 0.0140

Low 15 20.1020 0.4897 0.4905 0.0211



Table 6 gives the performance of the sensor network where the distance between the nodes are uneven. As the nodes
are placed at random, the energy dissipation between the nodes is also random. The link failure is assumed to be 75%.
The message needs to be traversed within 4 hops. Fusion between nodes enhances the environment awareness, and also
reduces data loss by the depleted nodes. The Poset weights to the link status and number of hops needs to be highly
weighed when compared to the other performance parameters. Therefore, the weights are assigned as 0.05, 0.15, 0.2,
0.3 and 0.3 respectively. The predicted energy is double that of the predicted distance because of the amount of energy
dissipated in traversing the message to farther nodes. The BER1 and BER2 are also affected due to the 75% link failure
as the communication strength is low when the nodes are placed farther apart. It must be noted that the response time is
too low but when referring back to (3), it is evident that the number of hops leads to a deceiving solution. 

Table 7 gives the performance of the sensor network where the energy at each node is unevenly allocated. Hence,
the performance of the network is counted towards the distance, energy, BER and link status between the sensors. The
Poset weights for this problem is the same as the above case. In a network with 75% node failure and with uneven
energy distribution data transfer becomes crucial. The energy being unevenly distributed has lead to a great loss of
energy but even under this condition the BER1 and BER2 were kept at minimal. Threat messages are always given pri-
ority and packet losses due to link failure are avoided.

 Table 5. CASE 4: Performance of Sensor Network - Energy Evenly Distributed - Link Failure 50%

Threat
Predictive 
Distance

Predictive 
Energy

Predictive 

BER1

Predictive 

BER2

Response 
Time

High 16.2546 17.2187 0.4650 0.4636 0.012

Medium 21.1525 21.5486 0.6291 0.5263 0.0171

Low 27.0912 28.2987 0.6746 0.605 0.0230

 Table 6. CASE 5: Performance of Sensor Network - Distance Unevenly Distributed - Link failure 75%

Threat
Predictive 
Distance

Predictive 
Energy

Predictive 

BER1

Predictive 

BER2

Response 
Time

High 18.8128 27.5297 0.5181 0.5221 0.0066

Medium 24.7391. 42.3806 0.5479 0.5406 0.0170

Low 32.1285 63.3994 0.634 0.6526 0.0227

 Table 7. CASE 6: Performance of Sensor Network - Energy Unevenly Distributed - Link Failure 75% - With Fusion

Threat
Predictive 
Distance

Predictive 
Energy

Predictive 

BER1

Predictive 

BER2

Response 
Time

High 20.6538 52.5591 0.5329 0.51 0.0101

Medium 26.0040 63.1376 0.6025 0.5951 0.0126

Low 35.8489 87.3408 0.6493 0.6219 0.0266



5. CONCLUSION AND FUTURE WORK

This paper extends the physical layer of the predictive sensor network to affect routing where energy, BER, distance,
number of hops and the link status are now factors. The major contribution in this paper, is to maintain a low BER under
harsh environmental conditions and prioritizing the threat messages. The network under a 75% node failure resulted in
a lower BER using both FHSS-GFSK and DSSS-BPSK model indicating the robustness of the AS. The six scenarios
presented in the result section re-emphasize the fact that a sensor network remains functional and assess the situation
under all critical conditions. In this paper, the secure transmission of data is provided using the spectrum. When an
entire spectrum is compromised, DS/FH spread spectrum [20] methodology can be used. 

A combination of Artificial Intelligence and evolutionary algorithm increases the performance of the system. Hence,
Bayesian network could be introduced, which would further enhance the learning ability of the AS. There are different
modes of operation in IEEE802.11 such as Ad-hoc mode and infrastructure mode. The predictive sensor network will
be modified to incorporate all these features. The sensor nodes considered here are assumed to be under a secure envi-
ronment, which is not true in reality. Secure transmission of messages under worm hole and sybil attack need to be con-
sidered as future work. 

The predictive nature of this approach could apply to many areas of engineering. A sensor network with predictive
capabilities could be applied to applications where decision plays an important role such as medical controller, military
applications, traffic monitoring and others. 
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